skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gavrikov, Alexey_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluorescence‐activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence‐activating and absorption‐shifting tag (FAST) is a light‐weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super‐resolution imaging. However, the rational design of FAST‐specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double‐donor‐one‐acceptor strategy, which exhibits an over 550‐fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M−1 cm−1, is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein−fluorogen interactions. Our deep insights into structure‐function relationships could guide the rational design of bright fluorogens for live‐cell imaging with extended spectral properties such as redder emissions. 
    more » « less